

Compressed Air Systems Asset List

An inventory of compressors, dryers, filters and accessories.

FOR COMPANY:		
Prepared by:	on:	

Manufacturer	Model	Serial Number	Flow/Pressure	Installation Date

The Right People, The Right Solutions, Right NOW!

Rules of Thumb

Facts about compressed air and compressed air systems.

LEAK FLOW RATES Based on flow through an orifice.										
Unstroom	Orifice Diameter (Inches)			Orifice Diameter (Inches)						
Psin	1/16"	1/8"	1/4"	1/2"	1/16"	1/8"	1/4"	1/2"		
i Sig	[) Discharge, d	ofm Free Ai	ir	Annual Cost					
80	5	21	85	340	\$757	\$3,028	\$12,111	\$48,443		
100	6	26	103	411	\$917	\$3,669	\$14,674	\$58,696		
120	8	30	121	483	\$1,077	\$4,309	4,309 \$17,237 \$68,949			
	^B	ased on air tem	perature of 60	² F.	^E	Based on 4 CFN	1/HP and 8¢/KWF	1		
PIPE SIZING MAX. RECOMMENDED CFM Based on 0.5 psi drop per 100' of pipe.										
PSIG	3/4"	1"	1 1/2"	2"	2 1/2"	3"	4"	6"		
80	20	40	125	225	375	675	1350	4000		
100	22	42	135	250	410	740	1510	4450		
125	25	45	145	280	450	810	1640	4900		
The new contraction normal details of an output of the optimized as follows.Flow from tank (cfm) = $Volume \times (P_1 - P_2)$ Time $\times P_0$ $Cfm = lpm X 0.0353$ Ips = cfm X 0.472 1 bar = 14.5 psi kg/cm ² = 14.22 psiWhere: Volume = Volume of the tank in Cubic Feet P1 = Starting pressure inside the tank (psig) Time = Time of the pressure inside the tank (psig) P0 = Atmospheric pressure (usually 14.7 psia) 7.4805 gallons per Cubic Foot 0.1337 Cubic Feet per GallonEffect of stabilizing Plant Pressure with FlowLogic Controller. 							$\frac{10353}{472}$			
Energy Cost (\$	$) = kW \times$	Operating H	lours ×	\$/kWH x AV(G. % loaded ·	+ kW (max.)	× Demar	nd Charge		
kW (3 Phase) = \underline{A}	mps $ imes$ Volts $ imes$	1.73 × Powe 1000	r Factor Bl	HP (3 Phase) =	Amps × Volts	1.73 imes Po	wer Factor $ imes$ N	lotor Efficiency		
Purge	Rate for Reger	nerative Dryer	s: Heatless 1	5% / Heated 7	'% / Blower Pu	urge 3%				
Rule of thumb for	rmulas for sing	gle stage rota	ry screw air c	compressor sy	stems:					
Power Change = $\frac{5\%$ Increase in Power 10 Psig Increase in PressureCapacity Change = $\frac{0.75\%}{10}$ Increase in Capacity 10 Psig Decrease in Pressure										
1 Hp \sim 4 to 5 cfmCost to run a compressor \gg \$1.25 per HP per Day										
A 100 cfm compressor (25 Hp), ingests approximately 18 gallons of water per day on a 75°F, 75% RH day.										
A properly operating after cooler and separator will remove approximately 68% of the water ingested by the compressor.										
A properly operating refrigerated dryer and drain will remove 28% of the ingested water leaving approximately 4.0%.										
A properly operating desiccant dryer will remove 32% of the ingested water, leaving approximately 0.3%.										

TATE The Right People, The Right Solutions, Right NOW!